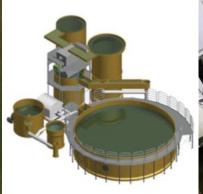


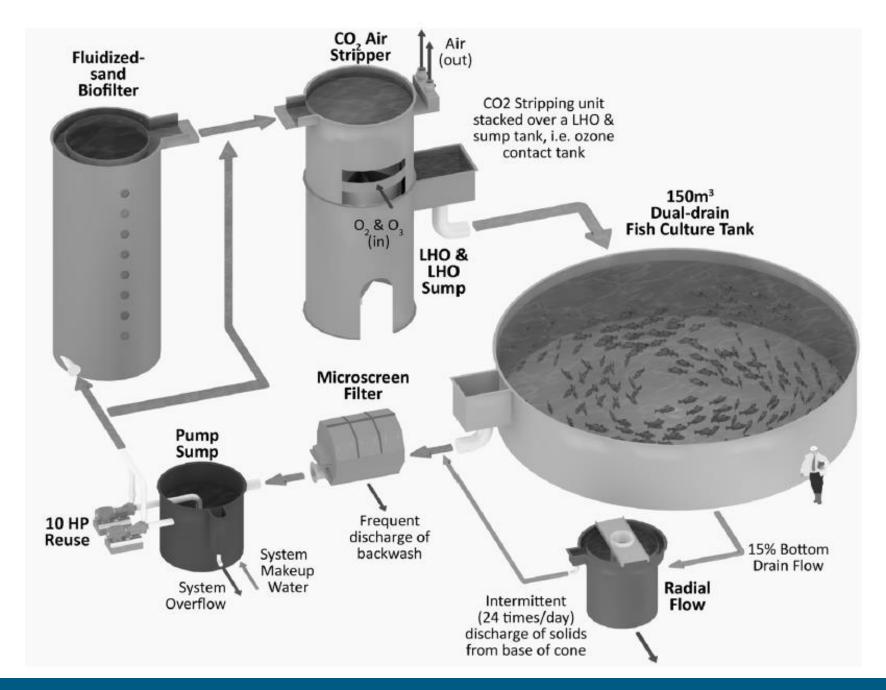
Ozone application in RAS: consequences for fish health and performance

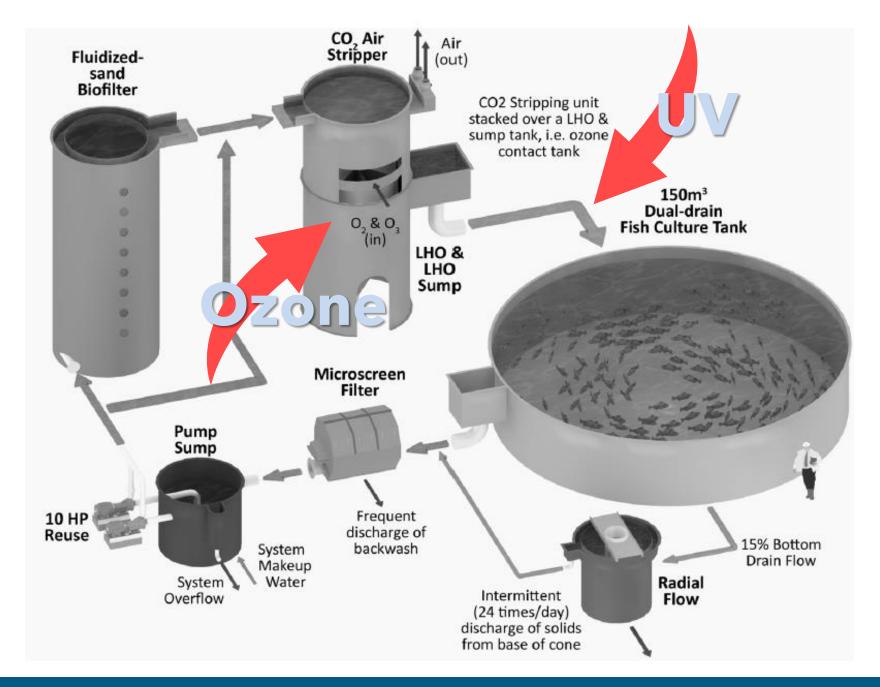


Centre for Closed-Containment Aquaculture

October 17, 2024
Smolt Production Workshop, Sunndalsøra

Chris Good, John Davidson, Steven Summerfelt





The Conservation Fund Freshwater Institute

Ozone Improves Water Clarity in RAS with Near-Zero Water Exchange

Rapid water clarity progression after turning on ozone in RAS with 90-day system HRT

Ozone Advantages

- Rapid reaction rate
 - dissolved ozone half-life = 0-15 sec (Bullock et al., 1997)
- Few harmful reaction by-products in freshwater
- Oxygen produced as reaction end-product
- UV irradiation destroys ozone residuals
- Disinfection capability when combined with UV

Full-Flow O₃ + UV Treatment Study

- Ozone added at LHO alongside O₂ gas
- 1.5 min O₃ contact time in LHO sump
- UV before flow enters fish culture tank to control O₃ residuals
 - -ORP control to adjust O_3 generation

aquacultural engineering

Aquacultural Engineering 37 (2007) 180-191

Ozonation followed by ultraviolet irradiation provides effective bacteria inactivation in a freshwater recirculating system

Mark J. Sharrer 1, Steven T. Summerfelt *

The Conservation Fund's Freshwater Institute, 1098 Turner Road, Shepherdstown, WV 25443, United States
Received 23 January 2007; accepted 21 May 2007

Total Heterotrophic Plate Counts, cfu/ml

	Before After			
	Ozone	Ozone	After UV	% Removal
No Ozone & No UV	466 ± 147	509 ± 139	530 ± 145	NA
Ozone @ 375 mv & No UV	48 ± 9	22 ± 5	21 ± 3	56.3
Ozone @ 375 mv + UV	124 ± 27	81 ± 18	3 ± 1	97.6
Ozone @ 450 mv + UV	50 ± 12	22 ± 4	0 ± 0	100
Ozone @ 525 mv + UV	386 ± 348	225 ±209	0.4 ± 0.3	99.9

conservationfund.org

Ozone Advantages: Improved Water Quality

- Oxidizes NO₂⁻ to NO₃⁻
- Removes color, fine particles, metals, and dissolved organics:
 - breaks non-biodegradable compounds into smaller, more biodegradable compounds;
 - precipitates dissolved organic molecules;
 - micro-flocculates fine particles;
 - improves solids removal by settling, filtration, or flotation.

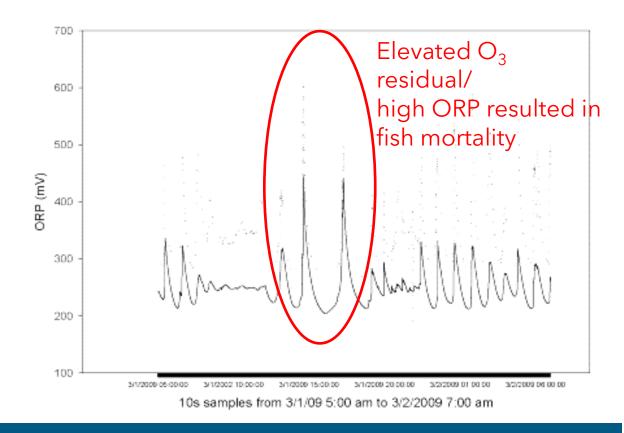
Ozone Disadvantages

- Ozone and its reaction by-products can be dangerous to humans and aquatic organisms.
 Safety measures are required!
- Ozone systems are relatively complicated
- Toxic byproducts (brominated compounds) can form when ozonating brackish or saltwater RAS
- Robust materials must be used to deliver ozone
 Stainless steel, teflon, viton (piping, solenoid valves)

Ozone Disadvantages: Worker Safety

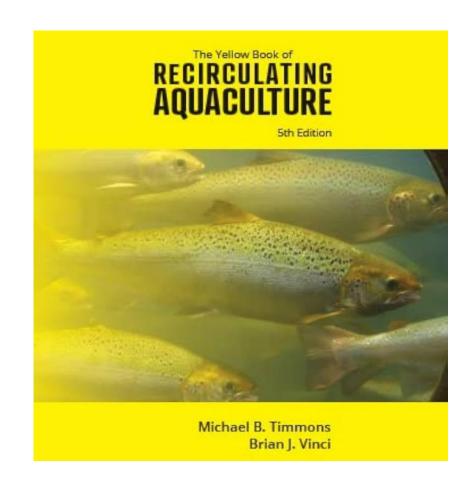
Very low exposure limits

- OSHA 8-h exposure 0.1 ppm
- 10 min exposure 0.3 ppm
- Immediately dangerous at 5.0 ppm
 - handheld and in-room ozone gas sensors
 - alarm capabilities and emergency response
 - external shutoffs, ventilation system

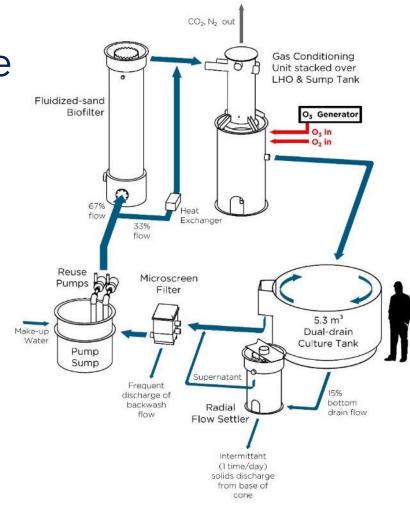


Ozone generator emergency shut-off should be located

Ozone Disadvantages: Toxic to Fish


- Toxic to fish at low concentrations
- FI uses ORP (mV) as indirect measure of O_3 residual

Species	Ozone Conc. (mg/L)
Rainbow	0.0093
Trout	(96-h LC ₅₀)
Bluegill	0.06 (24-h LC ₅₀)
White	0.38
Perch	(24-h LC ₅₀)
Striped	0.08
Bass Larvae	(96-h LC ₅₀)


Ozone Dosing Rate

- Summerfelt et al. (2009): 27-29 g ozone/kg feed
 - High dose ozone followed by UV (disinfection)
- Davidson et al. (2011) 20-25 g ozone/kg feed
 - Low dose ozone, no UV for water quality control
- Yellow Book Rule of Thumb 13-24 g ozone/kg
 - Low dose for improved water quality and fish health

Ozone Research in Replicate RAS

- 3 RAS with ozone; 3 RAS without ozone
- Non-disinfecting dose with on/off control via ORP feedback
 - Rainbow trout production at various flushing rates
 - Atlantic salmon production
 - Effects on hormones,
 - Early maturation

Ozone Improves Water Quality

Davidson et al. (2011). Aqua. Eng. 44, 80-96.	Study 1		Study 2		Study 3	
Water Quality Metrics	Low Exchange No Ozone	Low Exchange Ozone	High Exchange No Ozone	Low Exchange Ozone	Very Low Exchange No Ozone	Near- Zero Exchange Ozone
BOD (mg/L)	3.6	1.7	2.5	3.0	11.8	3.9
True Color (Pt-CO units)	53	4	12	5	157	5
UV Transmittance (%)	60	82	89	77	30	66
TSS (mg/L)	8.7	3.4	3.4	4.6	18.9	3.5
Heterotrophic Bacteria (counts/mL)	2.0×10^5	92	117	114	825	77
Dissolved Copper (mg/L)	0.064	0.021	0.014	0.038	0.119	0.005
Dissolved Zinc (mg/L)	0.005	0.001	0.011	0.007	0.128	0.082

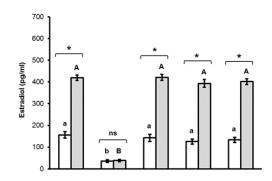
Ozone Improved Rainbow Trout Growth

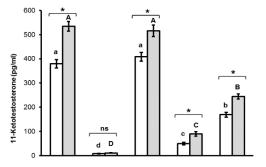
- Cumulative water quality
 improvements = faster growth
 - Possibly enhanced feed capture response

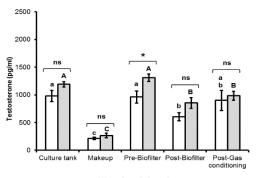
Ozone Reduces Waterborne Hormones

- Effects of ozone (white bars) vs. no ozone (gray bars) on waterborne hormones in RAS water
 - ozone significantly reduced estradiol levels
 - testosterone, 11-KT lower in ozonated RAS

Aquacultural Engineering 79 (2017) 9-16


Contents lists available at ScienceDirect


Aquacultural Engineering

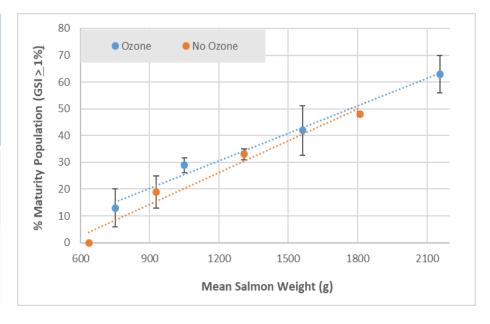

journal homepage: www.elsevier.com/locate/aque

The effects of ozonation on select waterborne steroid hormones in recirculation aquaculture systems containing sexually mature Atlantic salmon *Salmo salar*

Christopher Good^{a,*}, John Davidson^a, Ryan L. Earley^b, Joseph Styga^b, Steven Summerfelt^a

a The Conservation Fund's Freshwater Institute, 1098 Turner Road, Shepherdstown, WV 25443, United States

b Department of Biological Sciences, University of Alabama, 300 Hackberry Lane, Tuscaloosa, Al. 35401, United States


Can Ozone Inhibit Salmon Maturation?

Hormones levels were reduced but early maturation was not inhibited Davidson et al. (2021).

Aquaculture 533, 736208.

% Maturity GSI <u>></u> 1%	2 Months	4 Months	6 Months	8 Months
Ozone	13 ± 7	29 ± 3	42 ± 9	63 ± 7
No Ozone	0 ± 0	19 ± 6	33 ± 2	48 ± 1

Ozone Improved Atlantic Salmon Growth

Water quality was dramatically improved and Atlantic salmon growth was significantly faster in ozonated RAS

Ozone Supports Fish Health & Welfare; however,...

Ozone associated with minor fin erosion

Atlantic salmon (Davidson et al., 2021)

Rainbow trout (Davidson et al., 2011; Good et al., 2011)

Histology also suggests gill changes associated with ozone

		Bimonthly FIn Scores (mean ± standard error)			
Treatment	Welfare Variable	2	4	6	
Ozone	Caudal Fin	1.3 ± 0.07	1.5 ± 0.06	1.1 ± 0.23	
No Ozone		0.5 ± 0.00	0.8 ± 0.03	0.8 ± 0.00	
Ozone	Ventral Fin	1.1 ± 0.06	0.9 ± 0.10	0.8 ± 0.10	
No Ozone		0.6 ± 0.03	0.8 ± 0.07	0.7 ± 0.07	
Ozone	Left Pelvic Fin	1.3 ± 0.06	1.2 ± 0.06	1.0 ± 0.13	
No Ozone		0.9 ± 0.07	1.2 ± 0.09	0.9 ± 0.09	
Ozone	Right Pelvic Fin	1.2 ± 0.09	0.9 ± 0.12	0.7 ± 0.12	
No Ozone		0.7 ± 0.03	1.1 ± 0.03	0.8 ± 0.15	
Ozone	Left Pectoral Fin	0.9 ± 0.10	0.7 ± 0.03	0.6 ± 0.09	
No Ozone		0.6 ± 0.07	0.9 ± 0.10	1.0 ± 0.07	

Acknowledgements

Ctrl/QU/

Research supported by the USDA Agricultural Research Service was under Agreement No. 59-8082-0-001. All experimental protocols and methods were in compliance with the US National Research Council's Guide for the Care and Use of Laboratory Animals, and were approved by The Conservation Fund Freshwater Institute's Institutional Animal Care and Use Committee prior to study commencement. Any use of trade, firm or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

