

Approaches for carbon dioxide degassing unit automation

Kevin Stiller, Andre Meriac, Geir Nævdal, Jelena Kolarevic

Talking about degassing costs in Nofima:

Aquaculture Europe 09, August 14-17 2009, Trondheim, Norway The bio-economic costs and benefits of improving fish welfare in aquaculture: utilising CO₂ stripping technology in Norwegian Atlantic salmon smolt production

Chris Noble^{1*}, Markus Kankainen², Jari Setälä², Iain Berrill³, Kari Ruohonen⁴, Børge Damsgård¹, Hilde Toften¹ and Sunil Kadri⁵

Kolma Marr, Muninbaken P-13, PO Box 5122, NO-8291 Tormia, Norway Ironish Game and Fisheline Research Institute, Turku Game and Fisheries Research alianen Peladuatu 3, 20202 Turku, Pintand VPORti eli Aquacita 2018, David Johanni, Pintand Pinter Martine Martine Statistica 10, Norway Trans-National Consulting Partnership, Germany Presenting author: chris. noble@Roofma.no benefish

Noble, C., Kankainen, M., Setälä, J., Berrill, I. K., Ruohonen, K., Damsgård, B., & Toften, H. (2012). The bio-economic costs and benefits of improving productivity and fish welfare in aquaculture: Utilizing CO2 stripping technology in Norwegian Atlantic salmon smolt production. Aquaculture Economics & Management, 16(4), 414-428.

Fig. 1: The relationship between CO_2 level and weight gain (%) in Atlantic salmon pre-smolts held in flow through tanks. Values represent mean \pm S.D.

flow through tanks. Values represent mean ± S.D.

Fig. 1: The relationship between CO2 level and weight gain (%) in Atlantic salmon pre-smolts held in

CO₂ Degassing costs are a old topic, but there where always more important topics. Energy will be expensive enough at some point.

Energy and degassing

Optimising energy usage by matching degassing efforts with requirements.

Blower and pump Degassing usage (effort; h)

A Franatech sensor was coupled to fan that removed the CO₂ form the degasser/production Hal.

There is this point where you have the highest degassing to lowest energy consumption.

Variables for Automation

2. Air Flow

4

Automation and perhaps AI leaning tools need data Specifications: Li-850 versus Oxyguard

 •Measurement range: 0-20,000 ppm (see table below)
•Accuracy: Within 1.5% of reading
•Sensitivity to water vapor <0.1 ppm CO₂/mmol mol⁻¹ H₂O
•Lower limit of detection 1.5 ppm

•Output rate: Up to 2 measurements per sec •Response time (T90):

AIR

• **CO₂:** <3.5 seconds from 0-375 ppm

Around 600 measurements in 5 min

input	12 salinity (ppK)
input	12 oC
input	1013,25 atmos pressu
1	
input	20000 ppm or uatm
output	41,614269 mg/l
output	2 %
output	2,091503943 kPa
output	0,020641539 bar

•Measurement range: 0-50 mg/L •Accuracy: +/- 1 mg/L

•Sensitivity to water vapor XXX •Lower limit of detection 1 mg/L

•Output rate: 5 measurements per min •Response time (T90):

CO₂: 5 (using the provided mixer) to 15 min (still water)

1 measurements in 5 min under best circumstances Low accuracy in lower CO₂ concentratons (< 10%)

WATER

Mass balance degassing preparation:

<u>CO₂ removal</u> in Water to Air

As expected **dissolved CO₂ removal** from water and **CO₂ increase in air** leaving the degasser were proportional.

In our system, removing 1 mg L⁻¹ dissolved CO₂ in water, air CO₂ increased by about 89 µatm

Removal efficiency "amount of incoming CO₂ that been degassed"

CO₂ removal increased with increasing dissolved water CO₂ levels into the degasser

In our system, an increase of **1 mg L⁻¹ dissolved CO₂** into the degasser unit **increased CO₂ concentrations in air by about 36 μatm.**

<u>The air removal values can be used to predict the incoming concentration of dissolved CO_2 into the degassing unit.</u>

Salinity

• .

Salinity effect	0.5 ppt	2.5 ppt	5 ppt
рН	7	7	7
Temperature (oC)	14	14	14
Alkalinity (mg/L)	50	50	50
Dissolved CO2 (mg/L)	8.4	6.6	6.0

Salinity effects for 0.5, 2.5 and 5 ppt on the dissolved CO_2 concentration in water with a constant alkalinity, pH and temperature.

T(°C)	Salinity (‰)										
	0	10	20	30	34	35	36	38	40		
1		_	7.273	6.903	6.760	6.724	6.689	6.620	6.55		
0	7.758	7.364	6.990	6.635	6.498	6.465	6.431	6.364	6.298		
1	7.458	7.081	6.723	6.382	6.251	6.219	6.187	6.123	6.060		
2	7.174	6.813	6.469	6.143	6.017	5.986	5.955	5.894	5.833		
3	6.905	6.558	6.229	5.916	5.795	5.766	5.736	5.677	5.619		
4	6.650	6.317	6.001	5.701	5.585	5.557	5.528	5.472	5.416		
5	6.408	6.088	5.785	5.497	5.386	5.358	5.331	5.277	5.223		
6	6.178	5.871	5.580	5.303	5.196	5.170	5.144	5.092	5.040		
8	5.751	5.469	5.200	4.945	4.846	4.822	4.797	4.749	4.70		
10	5.366	5.105	4.857	4.621	4.529	4.507	4.485	4.440	4.390		
12	5.017	4.776	4.546	4.327	4.243	4.222	4.201	4.160	4.119		
14	4.700	4.477	4.264	4.062	3.983	3.964	3.945	3.906	3.869		
16	4.412	4.205	4.008	3.820	3.747	3.729	3.712	3.676	3.64		
18	4.149	3.958	3.775	3.600	3.533	3.516	3.499	3.466	3.434		
20	3.910	3.732	3.562	3.400	3.337	3.322	3.306	3.275	3.24		
22	3.691	3.526	3.368	3.217	3.158	3.144	3.130	3.101	3.073		
24	3.491	3.337	3.190	3.050	2.995	2.982	2.968	2.942	2.91		
26	3.307	3.164	3.027	2.897	2.846	2.833	2.821	2.796	2.77		
28	3.138	3.005	2.878	2.756	2.709	2.697	2.685	2.662	2.639		
30	2.983	2.859	2.741	2.627	2.583	2.572	2.561	2.540	2.51i		
32	2.840	2.725	2.615	2.509	2.468	2.457	2.447	2.427	2.40'		
34	2.708	2.601	2.498	2.400	2.361	2.352	2.342	2.323	2.30		
36	2.587	2.487	2.391	2.299	2.263	2.254	2.246	2.228	2.21		
38	2.474	2.382	2.292	2.207	2.173	2.165	2.157	2.140	2.124		
40	2.370	2.284	2.201	2.121	2.090	2.082	2.074	2.059	2.044		

Effect of Salinity and Temperature on the solubility of carbon dioxide. From Weiss (1974)

Mini RAS Experiment

- 1. Air flow rate (Fan feed 1,2,3)
- 2. hydraulic loading rates (HLR) 10, 20, 30 L/m²s (Water flow rate equal 1000 (21.50 hz), 2000 (22.70 hz) and 3000 (24.30 hz) L/h).
- 3. Alkalinity 50, 200 mg/L CaCO₃
- 4. Air CO_2 concentration
- 5. Water CO_2 concentration 5, 10, 20 mg/L dissolved CO_2
- 6. Salinity 0 ppt, 12 ppt

(3 weeks)

It seems that high alkalinity tend to have a less higher degassing efficiency at higher retention times. Reformation from the carbonate pool likely.

Salinity effect was difficult to determine. It seems that high alkalinity and brackish water under high water flow rates gave a lover degassing performance.

Degassing performance AIR to WATER gives you the GL without having the airflow

RAS Energy modeling

 $P = \Delta p \cdot q \cdot f_{conv}/c$

Major energy consumers are circulation pump and stripper fan We assume both can be modelled using the algebraic equation In the equation:

P [W] is power

 Δp [Pa] is the difference between the inlet (suction) and the outlet (discharge) pressures

q [m3/s] is the liquid (for the pump) or air (for the fan) flow rate

 f_conv is a conversion factor:

for the pump we convert from m3/min to m3/s

for the fan we convert from mol/min to m3/s

c is the pump or fan efficiency; in our study we use c=0.8

Mass balance degassing g CO_2/h

Energy logging

1000 (21.50 hz), 2000 (22.70 hz) and 3000 (24.30 hz) L/h water flow rate

In trickling designs the pumps consume around 10 times the energy than the blower

Mass balance degassing: g CO₂/h per KW You can pick the best energy efficiency to remove CO₂

Possible automation feedbacks (in work):

«Air» + water + energy measruements = Mass balance degassing
Only water or air measurements + energy measruments

Automated Mass Ballance Degasssing

Discussion and conclusion

Air vs Water based measurements:

- Companies start working with these approaches
- online air measurements in milliseconds of the CO₂ concentrations make the LICORE unit more reliable controlling the degassing unit.
- However, automation would also just work with a submerged units or faster equilibrate units (also air measurements).

Energy adjusted automated Mass balance online degassing

- Possible as online measuring technologies are not expensive compared what can possibly be saved on energy over longer time periods.
- Is useful for future energy and degassing efficiency approaches.
- #RAS4.0. Working on model for automation coupled with machine learning. Working at tank threshold concentration at the inflection point energy usage of degassing performance to adjust the degassing pump and blowers.

Dos Santos, A. M., Bernardino, L. F., Attramadal, K. J., & Skogestad, S. (2023). Steady-state and dynamic model for recirculating aquaculture systems with pH included. *Aquacultural Engineering*, *102*, 102346.

RAS4.0

Thank you for your attention.

