Smolt Production in the Future

Sunndalsøra, Norway October 17, 2024

Evaluating the Effects of Nitrate-nitrogen Concentrations with Heart Rate Bio-loggers

> John Davidson Senior Research Scientist The Freshwater Institute

Nitrate Accumulation in RAS

Nitrification – Ammonia Nitrite Nitrate

- > Feeding, water exchange, nitrification, & denitrification affect NO₃-N levels
 - We control NO₃-N via dilution by replacing backwash and RAS overflow
- Establishing a safe nitrate level instructs:
 - Required water use, feed loading rate, and system design criteria

Previous Salmon Nitrate Research at FI

- Nitrate is less toxic than ammonia and nitrite, but it can negatively affect fish physiology.
- Davidson et al. (2017) No effects on Atlantic salmon growth, health, or welfare - 10 vs. 99 mg/L NO₃-N
 - 0.1 kg to ~1.2 kg over an 8-month study

High Nitrate-N

60

90

1.5

1.2

0.9

0.6

0.3

0.0

0

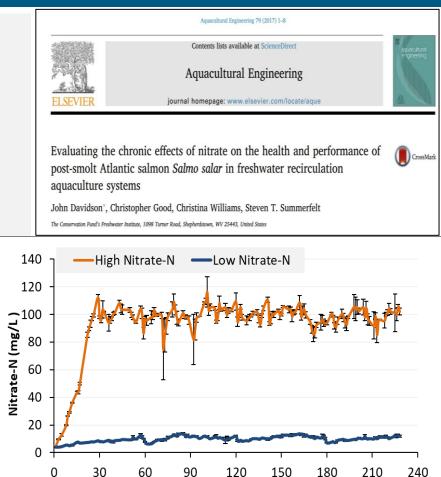
30

Mean Salmon Weight (kg)

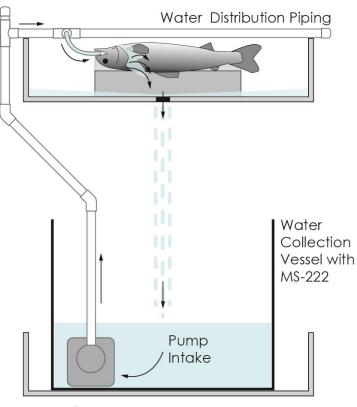
> Can we grow salmon post-smolts at >100 mg/L NO₃-N?

Low Nitrate-N

120


Day of Study

150

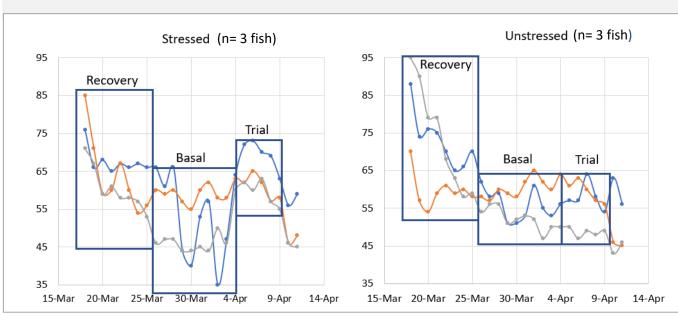

180

210

240

Day of Study

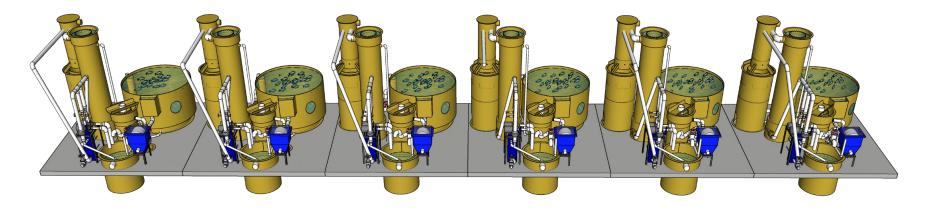
Pump



- Heart rate bio-loggers have been used to assess fish stress and the suitability of fish husbandry practices.
 - Not previously used to assess RAS environment effects
- Before the main study, we familiarized ourselves with the bio-logger implant procedure.
- Constructed a surgery table that recirculated oxygenated water containing a mild sedative.

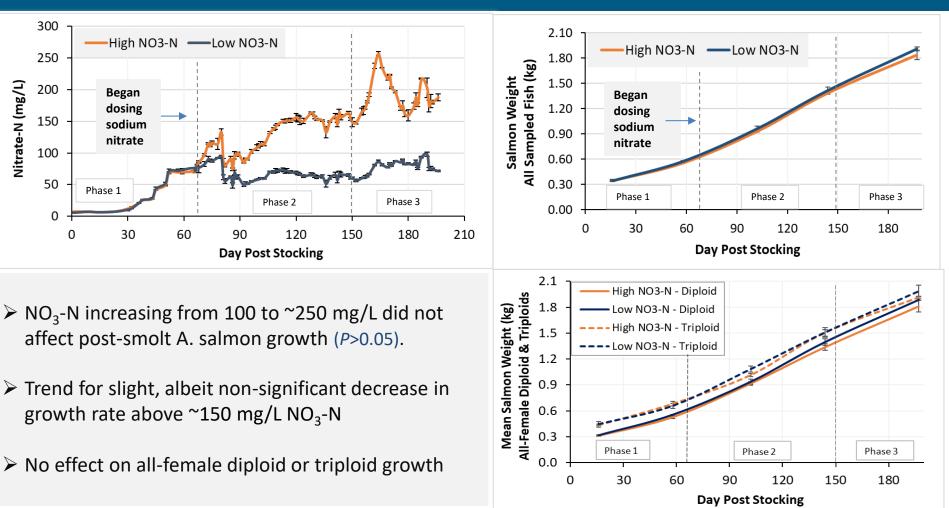
Bio-logger Pilot Study

- Pilot study Implanted bio-loggers in six salmon (200 250 g)
 - Stocked in two flow-through tanks (3 fish/tank)
- After 3 weeks, we chased fish with a net in one tank to observe changes in heart rate.
- > Proof of concept and guidance for the necessary recovery period



- Six replicated RAS 5.3 m³ tanks; 9.5 m³ total volume
 - 50 100 mg/L vs. 100 250 mg/L NO₃-N (3 RAS/treatment)
 - 227 all-female Atlantic salmon (79% diploid, 21% triploid), 0.32 kg to begin
 - 6 salmon with bio-loggers per RAS
- \succ Natural NO₃-N accumulation to 50 100 mg/L in all RAS
 - ~12-day system hydraulic retention time
- Sodium nitrate dosed via peristaltic pump to achieve higher NO₃-N levels
- Sodium sulfate dosed to balance Na+ and conductivity in the control RAS

Comprehensive Water Quality Analysis


\triangleright	Water quality control is essential	
	in toxicity studies.	

- However, there was a trade-off for balancing ionic conditions.
- Higher sodium & sulfate in control RAS due to sodium sulfate dosing
- Non-toxic to salmonids

* Significant difference	High NO ₃ -N	Low NO ₃ -N	
Dissolved Oxygen (mg/L)	10.4 ± <0.01	10.5 ± 0.2	
Temperature (°C)	13.0 ± 0.1	12.9 ± 0.1	
Alkalinity (mg/L)	151 ± 5	146 ± 1	
Hardness (mg/L as CaCO ₃)	329 ± 1	333 ± 2	
Carbon Dioxide (mg/L)	6.1 ± 0.1	6.1 ± <0.1	
Dissolved Copper (mg/L)	0.014 ± 0.001	0.016 ± 0.001	
Dissolved Potassium (mg/L)	6.3 ± 0.1	6.3 ± 0.1	
Total Ammonia Nitrogen (mg/L)	0.23 ± 0.01	0.23 ± <0.01	
Nitrite Nitrogen (mg/L)	0.022 ± 0.004	0.014 ± 0.002	
Nitrate Nitrogen (mg/L) *	147 ± 1	71 ± 1	
Sodium (mg/L) *	217 ± 3	249 ± 2	
Sulfate (mg/L) *	35 ± <1	256 ± 2	
Specific Conductance (µS/cm) *	1.86 ± 0.01	1.92 ± 0.01	
Total Suspended Solids (mg/L)	1.8 ± 0.2	1.6 ± 0.1	

Nitrate Accumulation & Salmon Growth

Comprehensive Fish Performance

 High survival for both treatments across all study phases

Trend for higher FCR during Phase 3

	High NO ₃ -N	Low NO ₃ -N	High NO ₃ -N	Low NO ₃ -N	High NO ₃ -N	Low NO ₃ -N
	Phase 1		Phase 2		Phase 3	
Avg. NO ₃ -N (mg/L)	31 ± <1	31 ± <1	*122 ± 1	67 ± 2	*186 ± 3	76 ± 1
NO ₃ -N range (mg/L)	8 - 74	7 - 78	108 - 172	45 - 79	135 - 261	53 - 105
Mean Weight A-F Diploids (kg)	0.53 ± 0.01	0.55 ± 0.01	1.34 ± 0.04	1.40 ± 0.04	1.81 ± 0.07	1.89 ± 0.01
Mean Weight A-F Triploids (kg)	0.68 ± 0.03	0.66 ± 0.03	1.50 ± 0.04	1.51 ± 0.06	1.91 ± 0.02	1.99 ± 0.07
Survival (%)	99.3 ± 0.4	99.7 ± 0.1	99.1 ± 0.1	99.8 ± 0.1	99.8 ± 0.2	100
FCR (economic)	1.01 ± 0.01	0.90 ± 0.06	1.09 ± 0.02	1.08 ± 0.05	1.28 ± 0.08	1.07 ± 0.14
Thermal Growth Coefficient	2.26 ± 0.06	2.46 ± 0.10	2.65 ± 0.01	2.65 ± 0.07	1.62 ± 0.13	1.74 ± 0.18
Maximum Fish Density (kg/m ³)	39.6 ± 0.6	41.3 ± 0.9	58.3 ± 0.2	60.1 ± 1.0	75.2 ± 1.3	79.3 ± 1.5
A-F Diploid External Signs of Maturity (%)	7.6 ± 3.1	7.3 ± 1.2	6.6 ± 2.3	9.8 ± 4.5	7.3 ± 2.7	4.6 ± 2.3

Welfare Scores

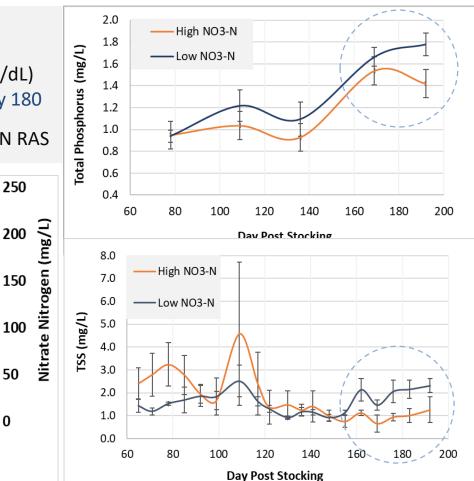
No differences in welfare	Treatment	Welfare Metric	Baseline	Phase 1	Phase 2	Phase 3
metric scoresFins, cataracts	High NO ₃ -N	Dorsal Fin Score	1.2 ± 0.1	1.6 ± 0.1	1.7 ± 0.1	1.8 ± <0.1
(<i>P</i> >0.05)	Low NO ₃ -N	Dorsal Fin Score	1.2 ± 0.1	1.7 ± <0.1	1.7 ± 0.1	1.8 ± 0.1
Welfare Indicators for farmed Atlantic salmon: tools for assessing fish welfare	High NO ₃ -N	Caudal Fin Score	0.8 ± <0.1	1.2 ± 0.2	1.2 ± 0.2	1.4 ± 0.1
	Low NO ₃ -N	Caudal Fin Score	0.8 ± <0.1	1.4 ± 0.1	1.4 ± 0.1	1.2 ± <0.1
	High NO3-N	Left Eye Cataracts	0.1 ± <0.1	0.5 ± 0.1	0.3 ± 0.1	0.4 ± 0.1
Entit in across fails an instance. Prove Lan H. Sen	Low NO3-N	Left Eye Cataracts	0.1 ± <0.1	0.5 ± <0.1	0.3 ± 0.1	0.4 ± 0.1
Edited by Chris Noble, Kristine Gismervik, Martin H. Iversen, Jelena Kolarevic, Jonatan Nilsson, Lars H. Stien and James F. Turnbull	High NO3-N	Right Eye Cataracts	0.4 ± 0.1	1.5 ± <0.1	1.2 ± 0.1	1.4 ± 0.1
	Low NO3-N	Right Eye Cataracts	0.5 ± 0.1	1.4 ± 0.1	1.1 ± 0.1	1.1 ± 0.1

Conservation Fund

Salmon Heart Rate (bpm)

Salmon Heart Rate & Overlapping Responses

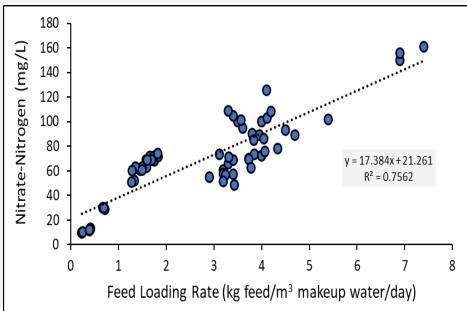
 \blacktriangleright Trend for increased heart rate >150 mg/L NO₃-N


Heart Rate (High NO3-N)

Day Post Stocking

High NO3-N

Higher plasma hematocrit (%PCV) and hemoglobin (g/dL) (P < 0.001) and chloride (P = 0.037) - high NO₃-N RAS – Day 180


 \blacktriangleright Water quality suggested reduced feeding – high NO₃-N RAS

Heart Rate (Low NO3-N)

LOW NO3-N

- Under these conditions (e.g., freshwater, hard water, fish size), NO₃-N up to 250 mg/L did not affect salmon growth or survival (P>0.05).
- Trends for faster heart rate, higher FCR, and different blood chemistry observed at >150 mg/L NO₃-N
 - A salmon farmer would likely culture fish at NO₃-N levels of no observable effect
- Higher feed loading and less water required/ kg feed
 - 278 L makeup water/ kg feed at 100 mg/L NO₃-N
 - 143 L makeup water/ kg feed at 150 mg/L NO₃-N
- But what about nitrogen discharge?
- Depends on site-specific variables and decisions:
 - Water availability, discharge requirements
 - Decouple denitrification to reduce complexity
 - Effluent treatment with membrane biological reactors, wetlands, aquaponics

Conservation Fund

- This research was funded by the USDA Agricultural Research Service under Agreement Number 59-8082-0-001.
- > The Conservation Fund and its partners are equal-opportunity employers.
- All experimental protocols complied with the Animal Welfare Act (9CFR) and were approved by the Freshwater Institute's Animal Care and Use Committee.
- Special thanks to our Fish Production, Water and Environmental Chemistry, Operations, and Engineering teams for their support during this project.

Aquacultural Engineering Volume 107, November 2024, 102461

Get rights and content 7

Evaluating the suitability of nitratenitrogen levels for post-smolt Atlantic salmon *Salmo salar* production in RAS with assistance from heart rate biologgers

John Davidson 🙁 🖾 , Curtis Crouse, Christine Lepine, Christopher Good

S	h	0	w	m	10	e	V	

+ Add to Mendeley 😪 Share 🍠 Cite

https://doi.org/10.1016/j.aquaeng.2024.102461 オ

Tusen Takk!

John Davidson Senior Research Scientist jdavidson@conservationfund.org

Questions?

