

R6 - 120 mg/L

S - 30 mg/1

Carbon bioavailability and nitrate determine H₂S production potential in sludge collected from Atlantic salmon in RAS

Fremtidens Smoltproduksjon 2022

Andre Meriac*, Jelena Kolarevic Researcher

Relevance for the industry

Sudden, "unexplained" mass mortalities in brackish/marine RAS – H_2S ?

SalmonBusiness

Head of aquaculture insurance firm on RAS: "some insurers don't want to insure those kind of farms"

News by Owen Evans - 11 September 2018

undercurrentn

seafood business news from beneath the surface

Land-based salmon farmer hit by die-off after securing funding for US expansion

On June 29 Atlantic Sapphire -- which has secured \$130 million of financing for a massive land-based salmon farm project in Florida -- lost a quarter of its budgeted harvest volume in its farm in Denmark, Langsand Laks. The news was first reported by *iLaks.no*.

According to Andreassen, this was 250 metric tons. The farm was "struck with a sudden and unexpected mortality of fish", according to a statement.

The Health Situation in Norwegian Aquaculture

... As expected, problems related to

hydrogen sulphide were identified much more commonly in RAS systems compared to through-flow farms. Only 6.75% of respondents reported this type of problem in through-flow farms while 57.2% had experienced H2S associated problems in RAS farms.

Relevance for the industry

Sudden, "unexplained" mass mortalities in brackish/marine RAS – H_2S ?

SalmonBusiness

Head of aquaculture insurance firm on RAS: "some insurers don't want to insure those kind of farms"

undercurrent

seafood business news from beneath the surface

Land-based salmon farmer hit by die-off after securing funding for US expansion

On June 29 Atlantic Sapphire -- which has secured \$130 million of financing for a massive land-based salmon farm project in Florida -- lost a quarter of its budgeted harvest volume in its farm in Denmark, Langsand Laks. The news was first reported by *iLaks.no*.

According to Andreassen, this was 250 metric tons. The farm was "struck with a sudden and unexpected mortality of fish", according to a statement.

The Health Situation in Norwegian Aquaculture

Updated numbers for 2021

Only 11% reported H₂S problems in RAS

roblems related to much more commonly h-flow farms. Only

6.75% of respondents reported this type of problem in through-flow farms while 57.2% had experienced H2S associated problems in RAS farms.

Norwegian Veterinary Institute

H₂S in RAS – Suspected cause for sudden mass mortalities?

H₂S toxicity

- H₂S binds with iron in mitochondrial cytochrome enzymes, prevents cellular respiration
 - LC₅₀96 for marine species: 50-500 μg/L (Boyd, 2014)
 - Chronic effects in 40-55 g smolts: ~270 µg/L (Kiemer et al., 1995)
 - Acute stress & damage in 150-200 g smolts: ~950 μg/L (Kiemer et al., 1995)
 - Recommendation: H₂S below 2-5 µg/L (Timmons et al., 2007; Boyd, 2014)

RAS-specific risks

- RAS biologically very active, rich in nitrate, organic matter and biofilms
 - Sulphate in sea water (~2600 mg/L)
 - Denitrification & sulphate reduction in oxygen-free niches (sediments/biofilms)
 - Operational conditions fluctuate (feed, water, biomass, etc.)

Current hypothesis on H₂S in RAS

"Mass mortality in RAS – Solved?" - Højgaard, 2017 (salmonbusiness.com)

Central hypotheses

• The ratio of biodegradable organic matter (BOD) to sulfate determines the total potential for H₂S generation

• The ratio of BOD to alternative electron acceptors determines net "release" potential for H_2S

"Equilibrium" (Zero net H₂S production) **Electron donors** Alternative electron (organic matter) acceptors (O_2, NO_3)

Net H_2S release = $H_2S_{production} - H_2S_{oxidation}$

Carbon-to-nitrogen ratios are key to quantify the potential for H₂S generation in RAS

What do we want to find?

- Focus on organic matter properties and how it is used, to assess H₂S production potential in sludge
 - How is bioavailable carbon allocated between denitrification and sulphate reduction?
 - Stoichiometry & kinetics of H₂S generation

Increased sulfate availability in saline water promotes hydrogen sulfide production in fish organic waste

Carlos O. Letelier-Gordo^{a,*}, Sanni L. Aalto^{a,b}, Suvi Suurnäkki^b, Per Bovbjerg Pedersen^a

^a Technical University of Denmark, DTU Aqua, Section for Aquaculture, The North Sea Research Centre, P.O. Box 101, DK-9850 Hirtshals, Denmark ^b University of Jyväskylä, Department of Biological and Environmental Science, P.O. Box 35, 40014 Jyväskylä, Finland

Experimental design

Sludge collection

- Compound sample of sludge from 3 swirl separators in brackish RAS (12 ppt, 6 x 3.3 m³ tanks, 12 °C, 30-40 kg/m³)
 - Atlantic salmon post-smolts of 200-300 g
 - Collection & homogenization of sludge (feces and feed spill)
 - COD/BOD to determine biodegradability of organic matter

Reactor design

- Similar setup as Letelier-Gordo et al. (2020)
- Continuously stirred batch reactors with brackish water $(V = 2 L, T = 12.4 \degree C \pm 0.2, 12.1 \text{ ppt})$
 - Fixed sludge dose: 1% sludge (V/V)
 - Variable nitrate dose: 0, 30, 60, 120 mg/L NO₃-N (3 replicates)
 - Deoxygenated with N₂ before inoculation

Results

1000.00

Concluded after 90 days of incubation Elimination of 5 reactors, due to air leaks

RESIA WP1

R6 - 120 mg/L

RS - 30 mg/L

Results: Nitrate depletion and S²⁻ response

Nitrate depletion confirmed

- 3 days in 30 and 60 mg/L NO_3N
- 5 days in 120 mg/L NO₃N

H_2S response ($S^{2-} \ge 1 \text{ mg/L}$)

- 5 days in 0 and 30 mg/L, 9 days in 120 mg/L
- Fastest increase with 30 mg/L
- 2-5 days delay in H₂S response after depletion of electron acceptor

Results: Nitrate depletion and S²⁻ response

Nitrate depletion confirmed

- 3 days in 30 and 60 mg/L NO_3N
- 5 days in 120 mg/L NO₃N

H_2S response ($S^{2-} \ge 1 \text{ mg/L}$)

- 5 days in 0 and 30 mg/L, 9 days in 120 mg/L
- Fastest increase with 30 mg/L
- 2-5 days delay in H₂S response after depletion of electron acceptor
- Average inital S²⁻ production rate ~0.6 g S²⁻ /L sludge/d

8 10

10

15

20

25

30

Time [d]

15

20

25

Results: Total S²⁻ production

- Maximum H₂S production for sludge without nitrate
 - 38 g S²⁻/L sludge (0 mg/L NO₃N)
 - 24.4 g S²⁻/L sludge (120 mg/L NO₃N)
- Significantly less H_2S with increasing nitrate concentrations

Results: Organic matter & H₂S production

Carbon bioavailability determined with respirometric cBOD test

- 82% of COD is degradable (41 d)
- BOD/N-ratios between 8 and 31 g/g

Treatment (NO ₃ N)	COD/N	cBOD ₄₁ /N
0		-
30 (31 mg/L)	37.7	30.9
60 (62 mg/L)	18.9	15.5
120 (123 mg/L)	9.5	7.8

Results: Organic matter & H₂S production

Calculating theoretical BOD demand, based on NO_3 -N consumption and S²⁻ production

- 2.86 g BOD/ g NO₃-N (Metcalf & Eddy, 2004)
- 2.67 g BOD / g S^{2-} (Metcalf & Eddy, 2004)
- Our result: 2.67 \pm 0.161 g BOD/ g S²⁻

COD balance can be closed at ~100%, fate of biodegradable matter can be predicted, H₂S production potential calculated

Norwegian Institute of Food, Fisheries and Aquaculture Research

Summary

- Bioavailability of carbon is key to understand risks for H_2S
- Nitrate delays/reduces H₂S response
- H₂S potential can be calculated

Knowledge gaps

- More work needed on diffusion-limited systems and H_2S oxidation rates relevant for RAS (sediments, biofilms)
- Degradation kinetics of carbon source could change reaction speed (e.g. feed spill vs. feces)

Acknowledgements

Funded by CtrIAQUA SFI, Research council of Norway (RCN project #237856/O30)

AKVALAB

Anders Gjeldnes Dag Egil Bundgaard Karoline Kittelsrud Aaram Kristin Skei Nerdal Tonje Kristin Vikan

Research Station

Filip Strand Radonjic Frode Nerland Jascha Gerwins Karoline Valseth

Ctrl/QU/

The Research Council of Norway

The Research Council of Norway