

Hva gjør Skretting med overgangsfôr for å sikre robust fisk?

Fremtidens smoltproduksjon, Sunndalsøra 27 October 2022

M. Naveed Yousaf, Ingunn Stubhaug & Vibeke Vikeså

Skretting Aquaculture Innovation (SK AI)

Established

1989 Q

Collaborations with

>50 research organisations

>100 >25
Employees Nationalities

40Researchers

23 T

Core competencies

Nutrition

Feed Production

Health

Smoltification challenges

- Smoltification strategies:
 - Light, temperature, smolt size, intensification
 - RAS vs Flow-through
- Spinal Deformities
 - 22-24% prevalence (Fraser et al., 2013)
 - Early life stages are sensitive to high temperature/heat shock, and can lead to deformities

The 10 diseases or welfare problems in salmon hatcheries

Most common causes of downgrading salmon, slaughterhouse

The importance of dietary phosphorous

Limited resource, in all animal species

Dietary or uptake via gills

Risk factor for deformities.

Build-up in water; eutrophication, flow-through vs RAS

Dissolved phosphate in water in RAS tanks

Skretting Trial

Optimal dietary Phosphorus for bone health

Team ©

Lucia Drabikova (Ghent University)
P. Eckhard Witten (Ghent University)
M. Naveed Yousaf (Skretting AI)
Charles McGurk (Skretting AI)
Thea Morken (Skretting AI)
Øyvind røn (Skretting AI)

Complete life cycle phosphorus study

Results - Growth

RP = Required Phosphorus

Results - Bone mineralization

Week 15

Freshwater

X-rays

Whole mount Alizarin red staining

Histology

LP = Low Phosphorus

RP = Required Phosphorus

HP = High Phosphorus

Results - Spinal deformities

Four scenarios

- 1. Recovery
- 2. Stable deformities
- 3. Progression
- 4. Late-onset deformities

Category 3. Progression

LP = Low Phosphorus

RP = Required Phosphorus

SKRETTING

a Nutreco company

Results - Mechanical properties

 Low P fish re-mineralized and re-attained vertebral stiffness.

 High P diet leads to more phosphorus excretion in kidneys but not increased P plasma levels as well.

LP = Low Phosphorus

RP = Required Phosphorus

⁰ HP = High Phosphorus

Re-think Phosphorus

- No growth differences identified in all three dietary groups.
- Fish fed experimental low phosphorus diet showed less mineralized spines in freshwater phase.
- Low phosphorus diet alone in freshwater does not increase the incidence of vertebral deformities in seawater.
- High P diet increases P excretion in kidneys and has no additive benefit in bone mineralisation nor deformity prevention.

Phosphorus in diet is not the sole causative factor for spinal deformities.

Thank you for your attention!

Skretting portfolio for fresh water and transfers

Optimal nutrition for each segment ©

